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Infinite sequences of period doubling bifurcations in one-parameter families 
(l-pf) of maps enjoy very strong universality properties: This is known numeri- 
cally in a multitude of cases and has been shown rigorously for certain 1-pf of 
maps on the interval. These bifurcations occur in 1-pf of analytic maps at values 
of the parameter tending to a limit with the asymptotically geometric ratio 
1/4,6692 . . . .  In this paper we indicate the main steps of a proof that the same 
is true for 1-pf of analytic maps from C" to C n, whose restriction to ~n is real. 
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1. M O T I V A T I O N  

Physical  models  of h y d r o d y n a m i c s  or  of o ther  diss ipat ive systems tend to 
be very compl ica ted .  In  addi t ion ,  the laws descr ib ing such systems are on ly  
known  approx imate ly .  One is thus faced  with the p rob l e m of isolat ing a n d  
if poss ible  answer ing  new types of quest ions which are  more  or  less 
i ndependen t  of a de ta i led  knowledge  of the dynamics  of any  given phys ica l  
system. Such qlaestions then have answers which are  universal. A well- 
known  field where  universal  answers  have  been  ob ta ined  is the renormal i -  
za t ion  group analysis  of cri t ical  p h e n o m e n a  in stat ist ical  mechanics .  

A new universal  p rope r ty  has been  d iscovered  by  F e i g e n b a u m  (4) for  
families of maps  of the interval  to itself, which d e p e n d  on  a parameter .  I t  
states tha t  if such families present  subha rmon ic  bi furcat ions ,  then one can  
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expect an infinite cascade of such bifurcations, as the parameter is varied, 
and they accumulate in a fashion independent of the detailed structure of 
the one-parameter family of maps. Soon afterwards, several authors (3'6'7) 
noted in numerical experiments that this phenomenon is not restricted to 
maps of the interval, but that it also occurs in discrete or continuous time 
approximations to the kind of equations one encounters in hydrodynamics. 
The purpose of this paper is to show why this is true in the discrete time 
case. 

The continuous time case is indirectly also covered by our results 
because there are many situations in which the continuous evolution can be 
described in terms of a discrete map by use of a Poincar6 map. Thus our 
theorems below are directly relevant to hydrodynamical equations in fi- 
nitely many variables, and they show that for many of these one should 
observe the universally scaled accumulation of period doubling bifurca- 
tions. For the Brnard flow in liquid helium, Libchaber and Maurer (9) have 
measured a power spectrum for such cascades which (at least qualitatively) 
looks similar to the power spectrum which can be predicted from the 
general theory developed in this paper. Feigenbaum (5) gives a heuristic 
derivation for this spectrum, which is based on our results. Thus we have a 
first indication of a possible link between the abstract theory presented here 
and experiments. 

2. I N T R O D U C T I O N  

Universal properties of one-parameter families of maps on an interval 
were discovered numerically by Feigenbaum (4~ and investigated from a 
rigorous point of view in Ref. 2. In that paper the authors considered 
one-parameter families of transformations of the interval [ -  1, 1] into itself 
of the form 

x~g~(Ixl '+') 
Here,/~ is the parameter, g~ (0) = 1, e > 0 is small, and g~ (.) is analytic in 
some neighborhood of [ -  1, 1] and satisfies some other technical conditions 
on the /z dependence. Assuming moreover that g~ is near to a specific 
function f, the following result was found. 

Theorem I. (2) There is a manifold ~ s  (of codimension one in a 
space of analytic functions) such that the following is true. If the family 
/x ~-> g, is transverse to ~ and if e is sufficiently small, then 

(1) The family /~--~g~ has infinitely many bifurcation points. These 
points correspond to successive bifurcations from a stable period 2 n 
to a stable period 2 n+l. 
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(2) If (]~i)i~N is the sequence of values of /~ for which a period 
described in (1) appears, then 

lim l ~  -/~n[ _ - l o g ~  
n--~ o0 n 

where 8 is a universal number, which depends only on e, but not on 
~ g ~ .  

The most interesting case E = 1 is not covered by this theorem but has 
been numerically studied by Feigenbaum. (4) In particular, he computed the 
value of the universal number: d = 4.669 . . . .  

Infinite sequences of period doubling bifurcations have also been 
observed in higher-dimensional systems. One of them is the Hrnon  map in 

' x - + y ]  

For b -- 0.3, the first 11 values of/~ for which a doubling bifurcation occurs 
were computed with good accuracy in Ref. 3. They appear to satisfy the 
universal behavior described in Theorem I with the same number & Other 
examples of this behavior in higher-dimensional flows were described in 
Refs. 6 and 7; cf. also Ref. 1. 

The aim of the present paper is to outline a proof of the universal 
behavior for maps in finite-dimensional spaces. We shall assume that the 
results proven in Ref. 2 for small e extend to e = 1. Lanford reported 
recently on some decisive progress in this direction, (s) and our hypotheses 
are inspired by his results. See also Ref. 10. 

Our argument is organized as follows. We first state some hypotheses 
on the one-dimensional case for e = 1. We then explain how the renormali- 
zation group program can be realized for certain maps on C n, n > 1. This 
includes the search for a fixed point of a nonlinear transformation and the 
study of its linearization at this fixed point. A second part of the argument 
should include a more detailed description of the stable and unstable 
manifolds ~ s and r u and of their intersection with certain submanifolds 
of codimension one. We have not worked out the tedious functional 
analytic details associated with this part of the argument. They should be 
similar to those of Ref. 2, and the reader is referred to that paper for an 
explanation of the geometrical ideas of the method. Throughout this paper 
maps Cn ~ C ~ are implicitly considered to be real on ~ .  

The main result of the present paper is the following theorem. 

Theorem I|. There is a map ~5 from C ~ to C ~, and a submanifold s~f~ 
in the space of analytic functions on C ~ to C n (of codimension one and 
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passing through qb) such that the following is true: 

(1) Every once continuously differentiable one-parameter  family 
# ~ G~ of analytic maps from C ~ to C ~ which crosses transversally 
through ~ near �9 has infinitely many bifurcations from a stable 
period 2 m to a stable period 2 m + 1. 

(2) If { IZm)m~N is the sequence of values of /~ for which a period 2 m 
described in (1) appears, then 

lira log[/Lo~ - / # . ]  _ log 6 
m-+oe m 

where 6 -- 4 . 6 6 9 . . .  does not depend on the family G.. 

3. THE ONE-DIMENSIONAL CASE. ASSUMPTIONS 

Before stating our hypotheses we recall some definitions associated 
with the one-dimensional problem. Let ~ be the set of functions g which 
map [ -  1, 1] into itself and for which - 1 < g(1) < 0. For g E ~L we define 
ff by 

~g(x)  = g ( 1 ) - l g  o g(g(1)x )  

Our first set of assumptions is the following. 

(M1) The equation ~g = g has a solution ~ ~ 9]L which is analytic in 
some neighborhood D l of [ -  1, 1]. 

(M2) ~ is symmetric, q(x) = f(x2), and f ' ( t )  :/: 0 for t ~ [0, 1]. 
(M3) Define )~ = q~(1). 3 For some positive 7, 

2~Zsup(lf'(z2)] :z E D1) < 1 - y < 1. 

(M4) f has exactly one zero in [0, 1]. 

From (M1) we can investigate the derivative of ~- at the fixed point ~. We 
obtain 

(D~7r = k-'h(~b(),z)) + k- 'O' (O(kz) )h(kz)  

komma 1. (4) If o(y) =yn  for some integer n >1 0 then 

is an eigenvector of D ffr with eigenvalue X n-1. 

Proof. We consider the following family S(t) of maps of the complex 
plane, 

z s ( t ) z  = z + t , , ( z )  

3 F o r  the  s o l u t i o n  f o u n d  by  F e i g e n b a u m  a n d  L a n f o r d ,  ~ ( x )  = 1 - 1.401 . . .  x 2, ), = ~(1)  = 

- 0 .3995 . . . .  
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which is well defined and invertible on a neighborhood of [ -  1, 1] for small 
t. 

If M x denotes the operator of multiplication by X in C, we have 

~(S( t ) - '  o e~o S(t)) = M~- 'o S ( t ) - ' o  M x o  (Mx- '  o q,o e~o Mx) 

o M~- 'o S( t )  o M x 

= ( M ~ - I  o S ( t ) - l o  Mx)  oO o ( M  x ' o  S(t) o Mx) 

Differentiating with respect to t and setting t = 0 we obtain 

D%(~o) = ~M;,  o o o M~ 

by using that fro = Ot[S( t )  - l o  dp o S(t)]lt=o. From this the result follows. 

Our last set of hypotheses is the following. 

(M5) The operator D ~0 has a simple eigenvalue 6 > 1 which is differ- 
ent from X-1, X-2.4 The corresponding eigenvector P is even. We 
define r(x 2) = p(x). 

(M6) The eigenvalues 8, X-1, 1 are the only eigenvalues of modulus 
>/ 1. Their corresponding spectral projections are one dimen- 
sional. 

Lanford has essentially completed the proof of (M1) . . . . .  (M4). (8) His 
method can be extended to prove (M5) and (M6). See also Ref. 10. 

Remark. In view of Lemma 1 it could seem reasonable to assume 
that one has found a total set of eigenvectors for D g-,. This is not the case 
and in fact the family {~o : a analytic} has infinite codimension. This can 
be seen as follows: For all o, one can easily check that ~o satisfies the 
relations 

d~'t ( Xo) [ ~k-J ( ~ -{- E+a)2J(~kJXo) - XO] 

id  2, ] - (~ ' (x0)  - 1) ~-~- (q~ + e%) (X)lx=X,xo - , ' (Xo)  = 0 

modO(e2), j = 0, 1,2 . . . .  

where x o is defined by ~(x0)= x o. This is true because effo is generated 
through a (nonlinear) coordinate transformation, and this leaves the deriva- 
tives at the periodic points invariant. It is also easy to see that the relations 
for different j are independent. 

4 I n  fact, 6 = 4.6692 . . . .  
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4. MAPS ON C" 

We introduce some notat ions for the n-dimensional  problem.  We  will 
use a fixed decomposi t ion  of C" into a direct sum C n = C @ C n-  I. If  z is a 
vector  of C ", its componen t s  will be  writ ten (z o, z). II " l[ will be the n o r m  of 
C ~ given by  

Ilzl[ = Ilzllco-, + Iz01 

where Ilzllc.-1 = (z -  ~)~/z is the usual no rm in C ~- l .  For  an  open subset D 
of C ~ let % ( D )  denote  the space of analyt ic  and  bounded  m a p s  f rom D to 
C ~. Equipped  with the no rm 

Ilhll = sup{l lh(z) l  I :z  ~ O } 

this space is a Banach  space. We  shall most ly  consider %a = %(D(A)) ,  
where D(A) is the convex set 

D(A) = {z E C ~ :  [I z - (y0,0)[I < A  for someyo ~ I - l , 1 ]  } 

We now fix a nonzero vector  a in C ~- I whose no rm is bounded  by  two. qb 
will always denote  the m a p  

z ~--~q~(z) = ( f ( ~ ( z ) ) , 0 )  (1) 

where ~(z) = z~ - a .  z and  where f is the funct ion described in (M2). No te  
that  if A is sufficiently small, so that  {~ l/Z(z):z ~ D(~)) is conta ined in 
D r , then �9 belongs to %a. The  universal  behavior  asserted in Theorem II  
will be  proven  in the sequel for one-paramete r  families of maps  which are 
near  to ~.  

It  might  seem that  this is an undue  restriction on the one-paramete r  
family. Note ,  however,  that  our  p rob lem is invar iant  under  C 1 coordinate  
t ransformations.  This means  that  given a one-paramete r  family G, of maps  
one might  find t ransformat ions  ~,~ such that  G~ = ~'S l o ~ ,  o T~ satisfies the 
conditions of Theorem II. In  particular,  ~-~ might  be  constant  and  change 
the direction or length of a .  The  conclusions of Theorem II  are then valid 
for G~ as well as for G,. 

We  next  define the renormal izat ion t ransformat ion.  Let  A be the 
diagonal  n-• n matr ix  given by  

Az = (X~o, X2z) 

where ~ = q,(1) = - 0.3995 . . . .  

Lemma 2. If  A is sufficiently small and  if G belongs to %a, and  
I[ G - ~11 < ~'A, 5 then A -  ~ o G o G o A also belongs to %a. 

5Cf. (M3) for the definition of Y. 
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Proof. From the hypotheses on f and on u = G - ~b it is easy to 
verify, using (M3), that for z E D(A), 

G(Az) = (f(X2~(z)) + uo(Az),u(Az)) 

is again in D(A), and therefore A - l o  G o G(Az) is well defined. The 
analyticity follows from that of G and of G(A- ). �9 

Definit ion. The transformation % given by 

% : G ~ + A - I  o Go G o A  

will be called the renormalization transformation. 
Owing to Lemma 2, this transformation maps the ball in %a centered 

at (I) and of radius 7A into %A- 

Lemma 3. ~ is a fixed point of %. 

Proof. This is an easy consequence of (M1), (M2), and of the 
definition of % and (I). �9 

According to the general philosophy of the renormalization group 
analysis, we shall now investigate the spectrum of the derivative of % at (I). 
One can easily derive the following expression for the derivative D %  C, 
where G ~ %a and [IG - ~11 < Ay/2:  

(D%Gh)(z) = A-I[h(G(Az) )  + DGG(Az)h(Az)] 

Proposition 4, For sufficiently small A, the following assertions 
hold. 

(1) % is a C 2 transformation on %6 defined in a ball centered at �9 and 
with radius yk /2 .  [[D2%0+.(h,k)11 < O(1)[[h H Ilkll provided [lull 
< ~,A/2. 

(2) D %o is a compact operator from %a into itself. 

Proof. We remark that for tiuH < yA/2 and sufficiently small A, 
(O + u) maps the closure of AD(A) into D(A) by (M1) and (M3). The 
assertion (1) is now verified by a direct computation. The compactness of 
D %o is a consequence of Montel's theorem. �9 

We start now an analysis of the spectrum of D %,~. Our result is 

Theorem 5 

(1) If a = (%,(0 is an analytic map from C" to C', and if A -1 o o o A 
= X %, for some integer m > - 2 ,  then the map ~I' o defined by 

To(z) = - (oo(f( ~ (z)), 0), et(f( : (z)), 0)) 

+ (2zof'(~(z))ao(Z) - f ' (~(z) )a ,  a(z), O) 

is an eigenvector of D %0 with eigenvalue ?t". 
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(2) d, ~t -2, }k -1, and 1 are the only eigenvalues of D % r  of modulus  
greater or equal  to 1. The  corresponding spectral  subspaces  are 
spanned  (i) for 8 by  P = (r  o ~, 0), where r is the funct ion def ined in 
(M5), and (ii) for X -2, X - l ,  1 by  the vectors ,I,o with A - I  o tro A 
equal  to X-2o, X-10, and  o, respectively. They  have  the dimensions  
1, n - 1, n, and  n 2 -  n + 1. 

Proof 

(1) This can be shown by  a me thod  analogous to that  of L e m m a  1. 
(2) I t  is sufficient to prove  the assertions for the restrictions of D 9L a, to 

a closed linear subspace which contains D %~,%a. The  direct sum 
%(A) = %0(A) ~ %(A) has this property ,  where 

= {h :h = (ho,O) 

H(A)  = {h : h ( z )  = (0, h l ( ~ ( z ) )  ) wi th  h~ analytic a n d  

bounded  on Do(A ) } 
where 

D0( ) = { : ( z )  D(A))  

The restriction of D % ~  to ~(A) will be  denoted  by A. Let  % '  
= % ( ~ ( D ( A ) ) O  D(A)). The  following two lemmas  will be proven  
below. 

L e m m a  6. Let  (A - / t )"xI ' r  = 0 for some T ~ % '  and  some ~ E N. If  
/t ~ {X k : k  = - 2 ,  - 1,0 . . . .  } then ~ = G o for some o which is analyt ic  in 
C ~ and  for which A -  1 o o o A = / t o .  Otherwise ,t% = 0. 

I . e m m a  7. Let  u ~ ( h )  and  let ( A - / t ) " u = 0  for some /t with 
I/t] /> 1. Then  u = cP + "t'r for some c E C and some �9 ~ %' .  

We  complete  the proof  of Theo rem 5, par t  (2). Let  u ~ r and  in a 
spectral  subspace of Dg"c~ with eigenvalue /t, [/tl >I 1. Since DOL~ is 
compact ,  and  /t v ~ 0, this means  that  for some ~ E N, (A - / t ) " u  = 0. By 
L e m m a  7, we conclude that  for some c, u = cP + xt% for some ~-E %' .  
Suppose / t  = 8. Then  (A - / t ) "cP = 0 and  hence (A -/ t)"xI% = 0, so that  by  
L e m m a  6, 't% --- 0. If /t =/= 8 then - cP = (8 - / t ) - ~ ( A  -/t)~qP~ = ~ for 
some x @ %'.  F r o m  ( A -  8)"cP = 0 we have  thus ( A -  6)"q'~ = 0 and  
applying L e m m a  6 again we must  either have  ~ = 0 or /t = X k, k 
{ - 2 , - 1 , 0 }  and  u = ~ , = q ' o  for a o with A - l o o o A = X  k. This com- 
pletes the proof  of Theo rem 5. �9 

Proof  of  L e m m a  6. For  r  0 let N( ( )  = {z ~ C" : [Izl[ < [El}. We 
define the bounded  operators  6 

. ~ :  9C(N(e)) --> ~ ( N ( X  - ' e ) )  by .4a = A - ' o  o o A 

6To shorten the notation we omit the e dependence of A. This can be rendered completely 
rigorous by writing the proper injections, etc. 
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and for (h~/I < 1, 

by (0(~)~)(z)= (oo(~%, ~,), ~ (~o , ,~) )  
One can  easily check that  

O(,)A = AO(,) = X - 2 @ , , )  

By defining U0?)~I'~ = q'5(~)~ for x E %(N(~-3 ) ) ,  we obta in  the corre- 
sponding relation 

U ( ~ ) A %  = .4 U ( ~ ) %  = X - 2 U ( X ~ ) %  

where we have  used that  A # ,  = ~I'~,. 
Let  us now assume that  (A - It)~ff', = 0 for some integer p >/ 1 and  

some, ' r  ~, %2 By choosing M E N sufficiently, large, we can achieve that  
v lg j -  o = A M I )  M"I ", where D = - ~ , j = I ( ; ) A  l ( _ i t ) - j ,  belongs to %(N(~k-3)). 

Moreover ,  q'r = ~I' o, and  

~ u ( ~ ) ' L  

defines an  analytic family of maps  in %a for IX~l < 1. Thus  in a disc of 
radius larger than  one the following series converges:  

oo 

u(~)~,o = E ~'oo,~ 
k=0 

y k ^ where %.k----(I/k.)O, UO1)m This is an expansion into eigenvectors of 
D ~rcr since 

1 k ^ ~  1 .  

_ ~ k - 2  k " ;kk-Za 
k! ~, lU(~)~ = o.~ 

For  all ~7 with ]7/X] < 1 one has  

o = u ( ,~ ) (A  - ~ ) ~ %  = (A - ~ ) ~ U ( n ) %  

This implies that  for k = 0, 1, 2 . . . .  

(A - ~)"'Lo,,~ = 0 

But (A - It)~q'oo~ -- ( 7~k-2 ~ �9 - i t )  o0�9 which leads to the conclusion tha t  
either q, oo~ --- 0 or it = hg-~.  The  assertion follows by  using that  

o~ 

�9 ~ = u ( ~ ) %  = E ~'o0~ " 
k=O 

Proof  of  Lemma 7. It  will be  useful to construct  a par t i t ion of the 
opera tor  1 on ~(A) which commutes  with A. For  a m a p  h = (h 0, h I o ~) in 
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OC(A) we define 

and 

V = h l ( f - l ( o ) )  

h2(~ ) = (h,(~) - v ) / f ( ~ )  
(2) 

(11oh)(z) = (ho(z) - f ' ( ~ ( z ) ) a .  v - �89 . h2(~(z)), 0) 

(II,h)(z) = ( f ' ( ~ ( z ) ) a .  v,v) { -- 't'(0,_,) } 

(II2h)(z) = (�89 �9 h2(;(z)), f(~(z))h2(~(z)) ) 
A 

This defines linear operators II0,111, 1-I2 on ~(A), which by our hypotheses 
on f are bounded by O(A- 1). From the explicit form of A and the fact that 
f(X~ r 1(0))2 = f - l (0) ,  one easily obtains the relations 

110 + I I l  + I12 = 1 

II,11j = 8,yilj, i, j = 0, 1, 2 (3) 
I l i  A = A I I i ,  i = 0, 1,2 

In view of (3) it is sufficient to show that the hypotheses of the lemma 
imply I l i u ~ c P  for some c E C, where h ~ k  means h - k ~ (Wo : a E %').  

A 

The case i = 1 follows since for all h ~ ~(A), I l lh is an eigenvector of 
A of the form ~Po with eigenvalue A-2, and thus 111u~0. 

Next we will show that 112u~0. For maps h in ~2(A)= 1120C(A) we 
define 

B(h) = h 2 o f - '  

where h 2 is defined in Eq. (2). 
Since, by (M2), m - 1  < ]f'(~)[ < m for some m ~ ~ and for all ~ 

D0(A), the components of B(h) are welt defined as analytic and bounded 
functions on f(D0(A)), which contains an open neighborhood of zero. It is 
easily seen that the action of A on ~ ( A )  induces 

B(Ah)(z) = ~-1B(h)(X~) 

i.e., it enlarges the domain of analyticity. Since 11i commutes with A, we 
find from (A - / ~ y u  = 0 that 

k = l  

This implies that B(II2u ) is analytic on C. Furthermore 112u = "I'o with 

o(z) = - (2,~. B(II2u)(z0), zoB(112u)(zo)) 

and thus II2u---0. 
Finally we will show that 11ou~cP for some c e C. Define the 
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bounded operators S : %0(A) ~ %(D0(A)) and S* : %(D0(A))--> %0(A) by 

(sh)(Zo) = ho(zo, O) 

( S * k ) ( z 0 , , )  = (k(zo), O) 

and set R = S*S.  These operators have the following properties: 

SS* = ld%(a) 

RA(I - R)[%0(a)= 0 

SAS* = D GS~, (the linearizcd operator for one dimension) 

Now let C = RAR. Since CS* = S*D~S~ and C(I - R) = 0, the spectral 
subspace % corresponding to cigcnvalues of modulus greater than or equal 
to I of C is spanned by the cigcnvcctors S'p, S*4/s ~, and S*~s ~, where 
x(z) = (1,0) and ~'(z)= (zo, O ). They differ from P, ff'~, and ~ (these are 
cigcnvcctors of A with corresponding cigenvalucs) only by elements in 
%0(A) which map vectors (z0, 0) to zero. Since for A sufficiently small the 
functions f, f ' ,  and r are analytic and bounded on ~(~(D(A))U D(A)), 
these differences can be written in the form 

,Po(z) = - ( f ' ( ~ ( z ) ) a  . (r(z), O) (5) 

with o = (0, or), or(z0, O) = O, and ~ o ~ 0 .  In other words, 

S * p ~ P  

S* ~ s ~ g , ' ~ O  

S* qJ s , ~  "P ~ O  

The assertion H o u ~ c P  will now be proven by showing that I I o u ~ k  for 
some k ~ %. 

By using that RA(1 - R) = 0 we obtain 

o = (.4 - ~ )~I lou  

= ( c  - ~ ) ~ n 0 ~  + ( - ~ ) ~ v  

= ( c  - ~ ) ~ ( n 0 u  + ~)  

where 

v = (i - R)A ~ (--~)-k(A -- ~)~-'n0u 
k=l 

This implies that II0u + v ~ %. From (4) it follows that for every 
k E ~ there is a w k ~ %0(A) such that v = (I - R)A kw k. The operator A 

~2~f( x2 substitutes z )~2~(z)) or z ~ Az in the argument of the function on 
which it acts. By (M3), for sufficiently large k, ~ k X'[i= iXgl and I I i=IXj~  are 
contractions on D(A). It follows that v is analytic and bounded on 
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qb(D(A)) U D(A), and since V(Zo,O ) = 0, it is of the form (5), and therefore 
we have v ~ 0 .  This concludes the proof of Lemma 7. [] 

5. THE DEFINITION OF A RENORMALIZATION TRANSFORMATION 

In the usual renormalization group analysis, the derivative of the 
renormalization transformation at the fixed point has only one eigenvalue 
greater than or equal to 1. We shall now show that the eigenvalues h-2,  
~,-l, and 1 of D %~ can be removed by the appropriate choice of a new 
renormalization transformation T. 

From the definition of 't" o, 

~o = O r ( I +  to) -1 o d9 o ( I +  to)It= 0 

it can be seen that the eigenvalues h ~, n = - 2 ,  - 1, 0, correspond to degrees 
of freedom associated to some change of coordinates (in particular the 
eigenvalue 1 corresponds to transformations which are compatible with our 
choice of the z 0 axis, i.e., which commute with A). Since we intend to 
describe only coordinate-independent properties, the eigenvalues ~" can be 
eliminated and ultimately play no role in the universal behavior. We shall 
now work towards the construction of a new renormalization transforma- 
tion whose derivative at the fixed point has spectrum inside the unit circle 
except for 8. 

Let E denote the spectral projection of D %~ associated to the eigen- 
values ~ - 2  ?-~,  1. The first step is the definition of a map h ~ o[h] which 
satisfies 

~oth] = Eh 

Define D '  = ~(D(A)) U D(A). For any h in %~, the Proposition 8. 
equation 

4~olh] = Eh 

has a unique solution o[h] in %(D').  The map h~--~o[h] is linear and 
bounded. 

Proof. Let % be the following finite-dimensional subspace of %(D') :  

% = ( o :  o ( z )  = v + ZoV' + (O, z2~ + bt'(z)) with v, v' ~ C n,/L ~ C n-1 

and/~' a linear operator from C n- i into itself) 

It is easy to verify that o ~-~ Qo = xI'o is a bounded linear operator from 
% to E%A. By Theorem 5, part 2, we have dim Q% --- d imE%a.  Therefore 
Q has an inverse Q - I  and we can define o[h] = Q - I E h .  [] 
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We are now able to define our final renormalization transformation T. 
The explicit expression is 

T :h~--~ 

( I  + o[ D%~h] )  o A - '  o (~  + h) o (~  + k) o A ~  ( l  + o[ DOL,~h])- ' -  

Since for sufficiently small [[hl[ the transformation z~--~z + o[D%,~h](z) 
maps D(A) analytically and one-to-one onto some neighborhood of 
D(A/2),  this transformation T is well defined in some neighborhood of zero 
in %a. 

(1) 
(2) 
(3) 

The properties of T are summarized in the following theorem. 

Theorem 9. If A is sufficiently small, then 

T is a C 2 transformation from a neighborhood of zero in %A to %a" 
D T  o = (1 -- E)D%~,, where DT o = DT  c at G = 0. 
DT o is compact and its spectrum consists of the simple eigenvalue 6, 
and a remainder strictly inside the unit disk. The eigenvector 
corresponding to 8 is 

e(z) = o)  

Proof. The proof is an immediate consequence of our previous 
results. �9 

The theorem above is the main ingredient for the analysis of universal 
behavior of maps, which now follows very closely the one given in Ref. 2. 
We have not, however, worked out all the details of the proofs of the steps 
of this construction, but we believe they should not be very different from 
the one-dimensional case. From the existence of the fixed point 0 for the 
map T and from its spectral properties one deduces the existence of stable 
and unstable manifolds ~ s  and 6~, for T in a neighborhood of 0. The 
main point of our preceding analysis is that 6~" s will have codimension one 
and ~ u  will have dimension one; furthermore T is expanding by a factor 6 
on ~ , .  Now let E 0 = ( G -  ~ : G  has one fixed point in D(A) and DG has 
one eigenvalue - 1  at this fixed point}. Let Em ~ T - m ( Z o )  �9 These mani- 
folds are, for sufficiently large m, transversal to e~', and the intersection of 
a curve/~ ~ G, (which is near 62t9,) with Em corresponds to the point of 
bifurcation from a stable period 2 m to a stable period 2 m+l for G~. Owing 
to the differentiability of T near 0, the distance of Z m from 0 goes as 
constant 8 -m and this is the main ingredient of the proof of Theorem II. 
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